
YOUR DRINKING WATER QUALITY

Talkin' Water

July 12, 2023

VIRTUAL EVENT GUIDELINES

- Sessions are recorded.
- Please make sure your microphone is muted.
- Raise your hand to ask questions by clicking on the Reactions button and then clicking on the hand.

- Once TVWD Staff call on you, unmute your microphone and ask your question. When finished, please mute your microphone again.
- TVWD operates in an inclusive and discrimination-free manner to serve all customers. Staff may
 exclude participants who disrupt events.

TVWD WATER RESOURCES DIVISION MANAGER

Joel A. Cary

What does the Water Resources Division do?

- Water quality monitoring, testing, and compliance
- Cross connection control (backflow prevention)
- Water rights management
- Supply and operational planning support

What are today's goals?

- Provide you, our customers, with some meaningful context about TVWD water quality
- Answer your remaining water quality questions!

TVWD'S CURRENT SOURCES

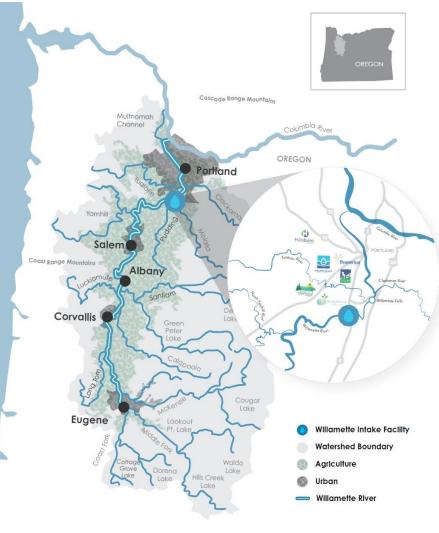
The District has a portfolio of high-quality sources

Portland Water Bureau (until 2026)

- Bull Run Watershed
- Columbia South Shore Well Field

Joint Water Commission (JWC)

- Barney and Scoggins Reservoirs
- Upper Tualatin River


Aquifer Storage and Recovery (ASR)

 Treated drinking water recharged and stored underground for seasonal usage

TVWD'S FUTURE SOURCE

The Middle and Upper Willamette River

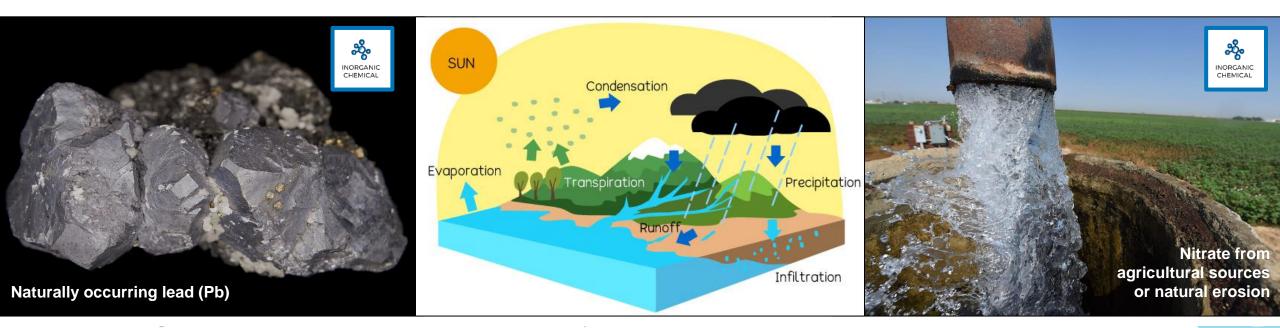
- TVWD and the Cities of Hillsboro and Beaverton have partnered to develop this new supply
- New, 60+ MGD multi-barrier treatment plant
- Developing a regional source water protection plan, expected to be adopted by spring 2024 (TVWD, Hillsboro, Wilsonville, Sherwood, Beaverton, Tigard)

2022 TVWD WATER QUALITY DATA

Annual Consumer Confidence Report (CCR)

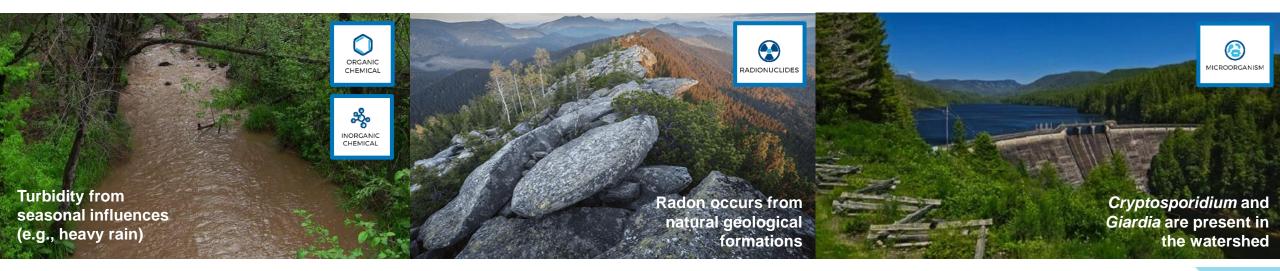
- The CCR summarizes thousands of samples collected by TVWD and our source water agency staff for the prior calendar year
- Available online in Spanish
- More detailed data are available (call or email wq@tvwd.org)

2022 TVWD WATER QUALITY DATA


Annual Consumer Confidence Report (CCR)

Bottom line... your water is safe to drink.

		easonably t									
		a health ris	sk. More i	nformation	about co	ntaminant	s and pote	ential healt	h effects o	he presence of contaminants can be obtained by calling the	
Parameter/Constituent	Units	MCL (77)	MCLG	Portlan Bur	d Water eau* in Ronge	Joint Comm	Water nission	Aquifer and Reco	Storage very (ASR)	Typical Source of Contamination	Compliance
INORGANICS	1			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Fluoride ¹	mg/L	4	4	<0.025		ND	ND	0.48	0.65	A water additive that promotes strong teeth; erosion of natural deposits	0
Barium	mg/L	2	2	0.00074	0.01070	0.0046	0.0055	0.0031	0.0035	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	0
Nitrate (as Nitrogen)	mg/L	10	10	<0.01		0.05	0.32	0.209	0.396	Agricultural runoff; leaching from septic tanks, sewage; erosion of natural deposits	0
Arsenic	µg/L	10	0	<0.50	1.05	ND	ND	ND	ND	Erosion of natural depostis	0
Lead (from source water)	µg/L		0	ND	0.15	ND	ND	ND	ND	Erosion of natural deposits	0
Copper (from source water)	mg/L		1.3	<0.00050	<0.00065	ND	ND	ND	ND	Erosion of natural depostis	0
ADDITIONAL TESTING											
Turbidity - Unfiltered	NTU	5	-	0.25	4.74					Soil runoff; erosion of natural deposits	0
Turbidity - Filtered	NTU	0.3	-	-		0.02	0.17	(Soil runoff; erosion of natural deposits	0
Sodium	mg/L	-		3.4		9.4	14	10.8	11.7	Erosion of natural deposits	0
Manganese	mg/L	50	-	0.0012	0.0318	ND	ND	ND	0.00238	Erosion of natural deposits	0
RADIOLOGICAL											
Radon ²	pCi/L	300	0	<12	333	-	-	169	393	Naturally occuring radioactive gas	0
MICROBIOLOGICAL	1					1		11			
Fecal Coliform Bacteria 5 >20 colonies/100mL in 6 months)	Present/Absent	тт	10%	ND	0.6%	NA	NA	ND	ND	Human and animal fecal waste	٥
Cryptosporidium (oocysts/L) ³	Present/Absent	TT	0	ND	0.08	NA	NA	(**		Human and animal fecal waste	0
Giardia (cysts/L) ⁴	Present/Absent	TT	-	ND	0.04	NA	NA	1.075	177	Human and animal fecal waste	0
Portland Wate t fiscal year, TWD purchased a ter from the Euli Run watershed ter st. Portland also uses pumped lumbia South Shore Well Field nn er to augment the Bull Run supp re information about the Portland pre information about the Portland trananonline.com/water.	bout 5.61 billion ga rtland's primary so in the Mt. Hood N groundwater from ext to the Columbia by when needed. F	urce is ational 1 the a for	the Jo the D Grove as we these locate	jc iscal year, al istrict and th . JWC water ell as the sea sources is t ed near Force visit iwcwat	bout 1.92 b bommission recities of I sources an sonal flow reated at th st Grove. Fi	(JWC), which Beaverton, H e Hagg Lake of the Tuala he JWC wate	s of water on is jointly of Hillsboro and and Barne tin River. W er treatment	wned by d Forest y Reservoir, ater from plant	dri Gra me of t	Aquifer Storage and Recovery (ring the winter when water is plentful, TWD s while water underground in the aquifer surrou abhorn well on Cooper Mountain. During the h niths, the stored water is pumped from the ag et peak water demands. The Grabhorn ASR we storing in excess of 300 million gallons of track more information about TWWD's ASR use, visit reces .	itores treated inding the ot summer uifer to help ell is capable ed water.


2022 WATER QUALITY: SOURCE DATA

Units	MCL (TT)	MCLG	Bure	eau*	Comm	nission	and Reco	very (ASR)	Typical Source of Contamination	Compliance Met
onits	WCE (11)	WCEG		<u> </u>		<u> </u>			Typical Source of Containmation	Wet
			WITIN.	IVIAA.	IVITIN.	MAA.	IVITIN.	WIAA.		
mg/L	4	4	<0.025	0.110	ND	ND	0.48	0.65	A water additive that promotes strong teeth; erosion of natural deposits	٥
mg/L	2	2	0.00074	0.01070	0.0046	0.0055	0.0031	0.0035	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	٥
mg/L	10	10	<0.01	0.14	0.05	0.32	0.209	0.396	Agricultural runoff; leaching from septic tanks, sewage; erosion of natural deposits	٥
µg/L	10	0	<0.50	1.05	ND	ND	ND	ND	Erosion of natural depostis	٥
µg/L		0	ND	0.15	ND	ND	ND	ND	Erosion of natural deposits	0
mg/L		1.3	<0.00050	<0.00065	ND	ND	ND	ND	Erosion of natural depostis	0
	mg/L mg/L μg/L μg/L	mg/L 4 mg/L 2 mg/L 10 µg/L 10 µg/L	mg/L 4 4 mg/L 2 2 mg/L 10 10 µg/L 10 0 µg/L 0	Units MCL (77) MCLG Burg Detection Img/L 4 4 <0.025	MIN. MAX. mg/L 4 4 <0.025 0.110 mg/L 2 2 0.00074 0.01070 mg/L 10 10 <0.01 0.14 µg/L 10 0 <0.50 1.05 µg/L 0 ND 0.15	Units MCL (77) MCLG Bureau* Detection Range Comm Detection MIN. MAX. MIN. mg/L 4 <0.025	Units MCL (77) MCLG Bureau* Detection Range Commission Detection Range MIN. MAX. MIN. MAX. mg/L 4 <0.025	UnitsMCL (TT)MCLGBureau* Detection RangeCommission Detection Rangeand Record Detection Detection Detection Detection Detection Detection RangeCommission Detection Rangeand Record Detection Detection Detection Detection Detection Rangemg/L4<0.025	UnitsMCL (TT)MCLGBureau* Detection RangeCommission Detection Rangeand Recovery (ASR) Detection RangeMIN.MIN.MAX.MIN.MAX.MIN.MAX.mg/L4<0.025	UnitsMCL (77)MCLGBureau* Detection RangeCommission Detection Rangeand Recovery (ASR) Detection RangeTypical Source of ContaminationImage: Large of

2022 WATER QUALITY: SOURCE DATA (CONT.)

Parameter/Constituent	Units	MCL (77)	MCLG	Portlan Bure Detectio		Comm	Water hission n Range	and Reco	r Storage overy (ASR) on Range	Typical Source of Contamination	Compliance Met
ADDITIONAL TESTING											
Turbidity - Unfiltered	NTU	5		0.25	4.74					Soil runoff; erosion of natural deposits	0
Turbidity - Filtered	NTU	0.3				0.02	0.17			Soil runoff; erosion of natural deposits	٥
Sodium	mg/L			3.4	15	9.4	14	10.8	11.7	Erosion of natural deposits	٥
Manganese	mg/L	50		0.0012	0.0318	ND	ND	ND	0.00238	Erosion of natural deposits	٥
RADIOLOGICAL											
Radon ²	pCi/L	300	0	<12	333			169	393	Naturally occuring radioactive gas	٥
MICROBIOLOGICAL											
Fecal Coliform Bacteria (% >20 colonies/100mL in 6 months)	Present/Absent	т	10%	ND	0.6%	NA	NA	ND	ND	Human and animal fecal waste	٥
Cryptosporidium (oocysts/L) ³	Present/Absent	TT	0	ND	0.08	NA	NA			Human and animal fecal waste	٥
Giardia (cysts/L)⁴	Present/Absent	TT		ND	0.04	NA	NA			Human and animal fecal waste	٥

2022 WATER QUALITY: TVWD SYSTEM

CONTAMINANTS TESTED IN TVWD DISTRIBUTION SYSTEM

Parameter/Constituent	Units	MCL	MCLG	LRAA Single Site Result (RAA) (Range)		Typical Source of Contamination	Compliance Met
DISINFECTION BY-PRODUCTS							
Total Trihalomethanes (THMs) ⁵	ppb	80		21 - 36	17.0 - 42.6	By-product of drinking water disinfection	0
Haloacetic Acids (HAAs)⁵	ppb	60		19 - 31	11.0 - 32.2	By-product of drinking water disinfection	0
Free Chlorine and Chlormaine	ppm	4	4	1.3	0.02 - 2.38	Water additive used to control microbes	٥
Parameter/Constituent	Units	MCL (AL)		R	esults	Typical Source of Contamination	Compliance Met
MICROBIOLOGICAL							
Total Coliform Bacteria % Positive	%	+	0 samp	es tested positive fo	or total coliform bacteria in 2022	Naturally present in the environment	٥
Fecal Coliform Bacteria % Positive	%	+	0 samp	les tested positive fo	or total coliform bacteria in 2022	Human and animal fecal waste	0

2022 WATER QUALITY: TVWD SYSTEM (CONT.)

CONTAMINANTS TESTED IN TVWD DISTRIBUTION SYSTEM

Parameter/Constituent	Units	MCL (AL)	MCLG	90th%"	Homes Exceeding Action Level	Typical Source of Contamination	Compliance Met
LEAD AND COPPER	(results from hig	h-risk hom	nes)6				
Lead - Customer Taps ⁷	ppb	15	0	13	8 of 107 homes sampled	Corrosion of household and commercial plumbing systems.	٥
Copper - Customer Taps ⁷	ppm	1.30	1.30	0.12	0 of 107 homes sampled	Corrosion of household and commercial plumbing systems.	٥

What's on the horizon for TVWD water quality?

Projects, efforts, and key information for customer awareness



TVWD'S SERVICE LINE PROJECT

Our efforts to prove we have no lead service lines

- TVWD has no known lead service lines
- Combining physical assessments with statistical modeling
- Nearly 400 randomly selected services will be evaluated
- Public health protection is our job even if we think we're at low risk

TIME

Drinking Water From Nearly Half of U.S. Faucets Likely Contains 'Forever Chemicals' Study Warns

Study says drinking water from nearly half of U.S. faucets contains potentially harmful chemicals. By JOHN FLESHER / AP July 6, 2023 9:38 AM EDT

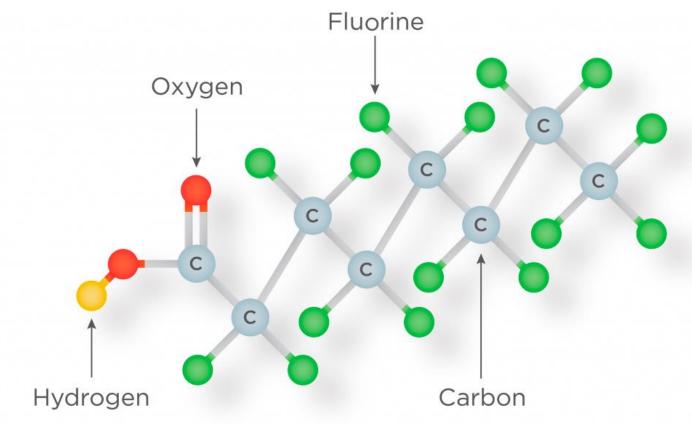
(TRAVERSE CITY, Mich.) — Drinking water from nearly half of U.S. faucets likely contains "forever chemicals" that may cause cancer and other health problems, according to a government study released Wednesday.

The synthetic compounds known collectively as PFAS are contaminating drinking water to varying extents in large cities and small towns — and in private wells and public systems, the U.S. Geological Survey said.

Researchers described the study as the first nationwide effort to test for PFAS in tap water from private sources in addition to regulated ones. It builds on previous scientific findings that the chemicals are widespread, showing up in consumer products as diverse as nonstick pans, food packaging and water-resistant clothing and making their way into water supplies.

PFAS IN THE NEWS

Per- and polyfluoroalkyl substances (PFAS)


- Recent USGS study estimated that nearly half of our water sources (public and private) could contain these compounds
- We're just as concerned as you are, and we're committed to ensuring that our customers receive safe, high quality drinking water

TVWD'S SECOND ROUND OF PFAS SAMPLING

Testing under EPA's Unregulated Contaminant Monitoring Rule

The carbon-fluorine (C-F) bond is one of the strongest known bonds in chemistry. As a result, fluorinated hydrocarbons are very difficult to 'break.'

- This sampling is a national and regional effort
- From 2013 to 2015, no detectable levels of 6 per- and polyfluoroalkyl substances (PFAS) were found in any finished drinking water samples from our sources
- TVWD and our regional partners are testing for 29 PFAS compounds (and lithium) during a 12-month period starting this month
 - Reporting limits are lower this time, e.g., 2-3 ppt
 - Results will be posted online as they're available (August timeframe)

MICROPLASTICS

What we know from the research in this emerging area of study

- Occurrence varies widely with sampling approaches and techniques (e.g., surface tension vs. water column)
- Treatment is effective but based on particulate size and exact process
- California in July 2021 adopted test methodology and monitoring requirements
 - Two years of source water testing and two years of treated drinking water testing
 - Why mention this? This will inform our planning and California is leading the way for any future rulemaking

YOUR TURN! ANY QUESTIONS?

Joel Cary Water Resources Division Manager

TUALATIN VALLEY

Joel Cary

<u>Joel.cary@tvwd.org</u> Tvwd.org/TalkinWater